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Theoretical Estimation of Fracture 
Toughness of Fibrous Composites 

M. R. P I G G O T T  
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada 

A method of estimating the fracture surface energy of fibre-reinforced materials is 
discussed. The surface work is shown to increase with increasing fibre content, strength 
and diameter, and decrease with increasing fibre modulus and matrix flow stress 
(or hardness). 

Relatively short fibres should be used if high toughness is required, and the maximum 
toughness that can be achieved is limited by the amount of crack opening that can be 
permitted. Under certain conditions, incorporation of fibres into a material can lead to 
embrittlement. 

1. Introduct ion 
Fibre-strengthening has so far mainly been 
considered for the strengthening of materials 
which are weak because of having a low flow 
stress. The incorporation of strong fibres has been 
shown theoretically [1, 2] and practically [3] to 
lead to considerable increases in the strength of 
plastics and ductile metals. 

Fibre-strengthening can under favourable 
circumstances produce composites which are 
tough, the toughness being due to delamination 
of the material parallel to the axis of the applied 
stress [4, 5]. In addition a long stress transfer 
length favours toughness [6]. 

The toughening of glass by using stressed 
fibres has been tested experimentally with good 
results [7]. Also a method of fibre-toughening 
has been suggested [8] in which ductile, tough 
fibres are used to arrest crack development. In 
this however, no account was taken of the effect 
on fibre toughness of the restraint provided by 
the matrix. The matrix will restrict plastic flow 
in the fibres as long as they are well bonded to it, 
and this could drastically reduce fibre toughness, 
and thus reduce their toughening effect on the 
matrix. 

Composites with parallel fibres stressed along 
the fibre direction fail in a manner that appears 
to depend on the bond between fibre and matrix. 
In the case of silica fibre-reinforced aluminium, 
when the bond was poor, cracks in the matrix 
normal to the stress axis were deflected by the 
fibres, and failure occurred by delamination. 
�9 1970 Chapman and Hall Ltd. 

When bonding was good, however, failure 
occurred by the crack extending normal to the 
stress axis and breaking the fibres [9]. During 
this process bridging of the crack by fibres may 
have been occurring; such bridging has been 
observed in the case of glass fibres in epoxy 
resins [10]. 

When fibre-bridging takes place, the stress on 
the fibres should be maximum in the plane of the 
crack. Thus, while short fibres may pull out, or 
fibres with many points of weakness in them may 
fail some distance from the crack and pull out 
[11 ], uniformly strong fibres can be expected to 
fracture in the crack plane. Before they fracture 
they may contribute to the fracture surface 
energy of the composite, if the matrix is ductile, 
by causing plastic flow in the matrix at the fibre 
surface. When they fracture the elastic energy in 
them may not be recoverable because they could 
cause further plastic flow in the matrix as they 
relax. 

This type of process is examined quantitatively, 
and an expression for fracture toughness is 
developed, ignoring elastic stress transfer. Then 
elastic stress between fibres and matrix is also 
considered. Finally some practical implications 
are discussed. 

2. Theory  
2.1. Model Considered 
An infinite sheet of composite will be considered, 
containing parallel, continuous fibres. The 
adhesive bond between fibres and matrix is 
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assumed not to fail. The composite contains a 
crack normal to the fibres, and the work required 
to extend the crack will be discussed. 

The matrix, which in the absence of fibres, 
would be isotropic, with rigidity modulus G, is 
elastic in shear up to stress ~-y. At shear stress 
greater than -ry it flows with no further increase 
in stress. The fibres, with Youngs Modulus El, are 
assumed uniform in properties, and are elastic 
in tension up to stress Cru, at which point they 
break without further deformation. 

When the crack extends, the matrix is assumed 
to fail, doing surface work 7m/unit area of crack 
which is substantially the same as that required 
to cause crack advance in the absence of fibres. 
The mechanism of matrix failure is assumed to 
involve some process which does not significantly 
alter the properties of the matrix close to the 
crack face. Stress release in the matrix on either 
side of the failed region is assumed to occur, and 
fibres are assumed initially to bridge this region. 
But as the crack opens, due to the applied stress 
ae, the fibres will be stretched, re-stressing the 
matrix to some extent. With sufficient opening of 
the crack, the fibres will reach the failure strain, 
au/E~. Stress transfer between fibres and matrix 
takes place by the combined mechanisms 
discussed by Piggott [2]. 

", ' , \ \ '2  "25 
Figure I Fib re  n e a r  c r a c k  tip.  

2.2�9 Plastic Work Involved in Crack 
Extension 

Consider one fibre near the crack tip (fig. 1). 
When the crack extends under the applied stress, 
it will also open, and the fibre will be pulled out 
of  the matrix to some extent. Owing to the stress 
transfer between fibre and matrix, the fibre stress, 
and hence strain, will vary along the fibre length 
from a maximum value at the crack face, to the 
average fibre stress at some region remote f rom 
the crack. The fibre will do work on the matrix, 
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which, with the assumptions discussed, is given 
at any point by the product of the interfa'cial 
force and the displacement of the fibre with 
respect to the matrix. 

Let the displacement be u and the work done 
be Urn, then since the force transmitted from 
fibre to matrix over a length dx of fibre is 
~rdTyudx, the work done by the fibre on the 
matrix is 

Um = ~d f ~176 "ryudx (1) 
o 

Thus 

say, where 

(1 - -  vf)Ef 
E r r =  

(1 + v,)(1 - -2v , )  

dee 4~-y 
- ( 3 )  

dx deft  

neglecting elastic stress transfer, x0 is the distance 
along the fibre to the point where the fibre stress 
has fallen to the average value. 

For the present we will neglect the average fibre 
stress. 

Urn will increase until the fibre breaks, and will 
not be available to do work on other parts of  the 
system when fibre failure occurs. The fibre will 
also gain elastic energy as fibre stress increases, 
and when the fibre breaks most of this energy 
will be released by the fibre doing further work 
on the matrix. This energy, which will also not be 
available for other work, will be given by 

f x~ Uf = �89 PEfdx (2) 
0 

where P is the force transmitted along the fibre 
and e~ is the fibre strain. Each fibre intersected by 
the crack will thus contribute an amount  of 
energy U m +  Uf to the fracture surface energy. 
Um and Uf now refer to the values of the energies 
when the fibre is at the breaking point, and may 
be evaluated as follows. 

Stress transfer from fibre to matrix will result 
in the fibre force decreasing with distance from 
the crack surface; i.e. 

dP 
dx --  rrd~-y �9 

I f  the fibre is restrained from decreasing in 
diameter, the strain in the fibre is given by 

4P(1 --  v0(1 --  2v 0 4P 
ef = Trd2Ef(1 - -  vf) --  ~d2Efr 
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and by integration with the boundary condition 
ef = ~u/Efr when x = 0, the stress transfer 
length x 0 is given by 

de% 
x0 = 4r-ry (4) 

and for x < x 0 

4~-y 
= YG r (x~ - -  X) (5)  

since -ry is assumed constant. Thus 

U z e f d x .  (6) 
XO 

Substituting values o f x  0, ~r and u from equations 
4 to 6 into 1 and 2 and integrating gives 

7rdao-u 3 
Um = Uf = )6%-E~r (7) 

Thus n fibres/unit area contribute a fracture 
surface energy 

yr = n (Urn q- Ur) -- 7rnda(rua Pd(~u~ 
48~'yEfr-  12~-yEfr (8) 

where p = nTrda/4 is the proportion of fibres in 
the composite. 

Fracture toughness, K = ac ,/~cc where ao is the 
applied stress for failure, and 2c is the crack 
length, may be calculated from the Griffith 
equation 

/ 2EraVm 

= 4 - 

for a thin crack in an infinite sheet in tension 
normal to the crack. (Era = Young's modulus, 
yra = fracture surface energy and Vm = Poisson's 
ratio of the matrix.) Thus, the fracture toughness 
of the matrix alone is given by 

Km = ~/(1 -- V"m) 

and the fracture toughness of the composite is 

%/ 2Ee { pdeu3\ 
Ke ~ C v2c) (1 -- p) 7m + 127vEfr fi (9) 

where Ee is the modulus and ue is Poisson's ratio 
of the composite. 

3. Discussion 
Equations 8 and 9 enable values for the fracture 
surface energy and toughness of composites to be 
calculated only under conditions where the 
elastic stress transfer near cracks for fibres 
bridging the cracks is small compared with 

stresses transferred by plastic flow at the inter- 
face between matrix and fibres. In addition, for 
simplicity in deriving the equations the fibres 
were assumed to be unstressed in regions remote 
from the crack. These stresses will now be 
considered, and the case of stress transfer by 
friction between fibres and matrix will be dis- 
cussed. The implications for practical materials 
will also be examined. 

3.1. Effect of Elastic Stress Transfer 
The fibre stress arising from elastic stress 
transfer between fibres and matrix, for fibres 
which are very long is 

ae = ~-y - -  log (3.63//,) 

(from equation A5, Appendix 1) where G is the 
modulus of rigidity of the matrix. The relative 
importance of this fibre stress is thus 

ae "ry J 2 ~ r  log(3.63/p) (10) 
(3" u O" u 

The energy in the fibre resulting from elastic 
stress transfer, given by equation A6 yields 

Ute 12Efr2"ry ~ log(3.63/p) 
= (1 I )  

and the extra elastic energy in the matrix due to 
stress transfer near the crack tip is given by 

{(ru , 2  log(3.63/p)} 

(equation A7). For strong fibres (ru/Err, the 
breaking strain of the fibres, is not likely to 
exceed 0.1, and is often in the region of 0.01. 
Thus, for a matrix whose yield stress is not very 
h i g h  Ume can be neglected compared with Ufe. 
The ratio Ufe/Uf may therefore be used to 
evaluate the toughening or embrittling effect 
resulting from the presence of the fibres. 

If Ufe/U~ = 2, the fibres introduce equal 
amounts of elastic and plastic work near the 
crack tip. Thus, they can be expected to have 
little effect on fracture toughness. However, 
when Ufe/Uf < 2, the fibres will toughen the 
matrix, and when Ufe/Uf > 2 the fibres can be 
expected to cause embrittlement. 

Ufe/Ur~2 will occur when the elastic 
contribution to fibre stress is relatively low, if the 
fibre breaking strain is low. For example, for 
Cru/Efr = 0.01, Ufe/Uf = 2 when (:re = 0.0580"u. 
Low values of Ufe/U~ are favoured by fibres that 
break at high strain and high stress, and matrices 
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that flow when the stress and strain are small. In 
addition, fibre content should be as large as 
possible. The values of ~,t and Ke given by 
equations 8 and 9 are only valid when 
Ufo/g~ < 2. 

Work-hardening in the matrix will increase the 
recoverable elastic energy, and decrease the 
toughening effect. Consequently the toughness 
calculated from these formulae will be too high 
for work-hardening matrices. 

3.2. Effect of Substantial Average Fibre 
Stress 

In regions remote from a crack the fibres will be 
under stress from the normal fibre-strengthening 
stress transfer (given by equations 1 and 6 in [2], 
for example). By considering the maximum fibre 
stress due to this form of stress transfer, as say, 
we may calculate the maximum effect we can 
expect this to have. 
(For long fibres ~rs = Ef ac/pEf -l- (1 --p)E,m.) 
When x = x0 the fibre stress is assumed to be as 
instead of zero. Thus, x 0 (equation 4) is reduced 
to 

d(a~ -- as) (4a) 
X ~  = 4Ty " 

If  the integrations in equations 1, 2 and 5 are 
done for this value of x0, this gives for equation 8 

~d3(a"~ - -  ~s3) (8a)  
Um= U~ = 96~-yEfr " 

This indicates that normal fibre-strengthening 
stress transfer is not important unless the applied 
stress is so high that the average fibre stress 
reaches a significant fraction of the ultimate fibre 
strength. 

3.3. Stress Transfer by Friction 
If  in making the composite the matrix has been 
shrunk onto the fibres, so that there is a radial 
compressive stress at the fibre surface and no 
adhesive bond, stress may be transferred by 
friction between matrix and fibres. For constant 
coefficient of friction the interfacial axial shear 
stress will vary due to shrinkage of the fibre 
diameter arising from Poisson's ratio. Thus, in 
equation 4, -ry should be replaced approximately 
by / . (R  - -  EmrEf) where R is the interfacial radial 
stress for fibres that are not axially stressed, and 
Emre~ is an approximate estimation of the 
reduction in interfacial stress due to "Poisson's 
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Ratio" effect (see Appendix 2). So long as this 
fibre shrinkage is not too large, i.e. when 
auEmr/E~rR ~ 1, Xo, Um and U~ are given by 
equations 4 and 7 with ~-y = FR. Some correc- 
tion is needed for larger shrinkage factors, and 
for ~zuErnr/EfrR ~ 1 the values of tensile strain 
and Poisson's ratio in the matrix have to be 
taken into account. 

3.4. Discontinuous Fibres 
Having fibres of relatively low aspect ratio would 
reduce the amount of elastic stress transfer, and 
hence increase toughness, in cases where U~e ~ Uf. 
The fibres have to have lengths greater than 2x 0 
to prevent them being pulled out. However, even 
if the fibre length is 4x 0 at least half the fibres will 
pull out, though in doing so they will still 
contribute something to fracture toughness. For  
any composite there will clearly be an optimum 
fibre length for maximum fracture toughness. 

If  stress is transferred by friction rather than 
flow in the matrix, the formulae given here can 
only be used to calculate the optimum fibre 
length when auEmr/EfrR < 1. 

3.5. Practical Implications of Parameters 
Affecting Toughness 

Consideration of elastic as well as plastic stress 
transfer (section 3.1) indicates that embrittle- 
ment may result from the addition of fibres to a 
ductile matrix. Equation 11 suggests that this will 
occur when long, high modulus fibres are added 
to a matrix with low modulus, especially if the 
fibres are not particularly strong. If  carbon 
fibres, modulus 4 • 104 kg mm -2 and strength 
700 kg mm -2 are added to a plastic, for example, 
with ~-y2/G= 1/10 kg mm -~ we find that 
Ufe/Uf ~-- 12, and the composite can be expected 
to be brittle. The embrittling effect can be 
reduced by having a coating on the fibres which 
has a much lower flow stress than the matrix. ~-y 
and G in the equations developed here may then 
be replaced by the flow stress and shear modulus 
of the coating. Alternatively, as mentioned in 
section 3.4 the fibre length should not be very 
much greater than 2x0. 

So long as Ufe/Uf ~ 2, it should be possible to 
produce a tough material. However, the tough- 
ness that may be achieved is limited by the 
maximum permissible crack opening. The full 
toughening effect of the fibre is produced when 
the crack has opened by an amount 2Uo in the 
region of the fibre, where Uo may be obtained by 
integrating equation 6 between x0 and zero; thus, 
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dffu 2 

2uo : 4~'yEtr " 

Vf may be maximised and Uo minimised if the 
ratio y f / 2 u  o =peru/3 is as large as possible. 
Consequently, the useful toughening that may be 
obtained is limited, and is greatest when strong 
fibres are used in as high a proportion as 
possible. 

4. Conclusions 
By choice of suitable values for fibre strength, 
diameter and modulus, together with a matrix (or 
fibre coating) with low flow stress, very tough 
composites can be made. With unsuitable 
combinations of materials however, brittle 
composites can be produced. Brittleness can 
occur even when elastic stress transfer to the 
fibres is small. This difficulty can be eliminated, 
however, by using short fibres instead of long 
ones, but full toughening will not be achieved if 
too many of the fibres pull out of the matrix 
instead of breaking. The toughness estimated 
from the equations will be too high for matrices 
that work-harden. 

Stress transfer by friction between fibres and 
matrix can give very tough composites, but 
calculation of the critical stress transfer length, 
and hence optimum fibre length, is complicated 
by fibre shrinkage. 

The amount of toughening that may be 
achieved is limited by the maximum permissible 
crack width in a composite which does not fail. 
Pre-requisites for high toughness are high values 
of fibre strength and fibre content. 

Appendix  1 
Elastic S t ress  Transfer  

The treatment in [2] for elastic stress transfer 
may be adapted to calculate the stress and energy 
in the fibre where the matrix is still elastic. Let 
the shear modulus of the matrix be G. If  Um is the 
displacement in the matrix parallel to the fibre at 
the fibre surface, the matrix strain in this region 
is 2um/d  log D/d ,  where D = average distance 
between nearest neighbour fibres, so that the 
stress at the matrix-fibre interface is 

7 : 2umG/d  log D / d  

and assuming no slip between fibre and matrix, 
the force in the fibre is 

dbl 
P : - -  ~Trd2Ef d x  

(u increases as x decreases with axis chosen as in 
fig. 1). Since 

dP 
7rd-r (A1) 

d x - -  

d2P 8 G P  

d x  2 - -  d2Efr l o g D / d  

which f o r P  = Po at x = Xo a n d P  = 0 at x = L 
(L = fibre length on each side of the crack) has 
the solution 

sinh/3(L - -  x )  
P : Po sinh/3(L -- Xo) (A2) 

where 

8G 8G 

t3z - -  d2Efr l o g D / d  - -  d2Efr log(2~r/p ~/~) (A3) 

where p is the proportion of fibres in the 
composite, assumed packed in hexagonal array 
(see equation 4, [2]). -r may be calculated by 
substituting the value of P from equation A2 into 
equation A1, i.e. 

/3t0 cosh/3(L - -  x) 
-r = 77--d sinh/3(L -- Xo) (A4) 

However, at x = Xo, ~- = ~-y since this is where 
the matrix becomes plastic at the fibre-matrix 
interface; thus 

~-y = -~d ~ coth/3(L -- x0)" 

For very long fibres/3L is large, so that 

(rs -- 77d2 -- -r, ---1" log(277/p ~/3)" (A5) 

The energy in the fibre due to elastic stress 
transfer is 

Ufe = P d x ,  
J xo 

which using equation (A2) for P, gives 

77d3"ryE~r ~ , 
Ufe - -  ~ log(z77/p ~/~) (A6) 

when L is large. 
The energy in the matrix due to elastic effects 

is 
77 ~L q-2 

Vme : ~ d 2 l o g D / d  ~-G d x  : 
0 

d z log(277/p ~/3) o ~-~ dx q- ~o 2-G dx , 

673 



M. R. PIGGOTT 

which using equation A4 for % gives 

Ume= 

f.ryJEfrlog(27r/px/3) zrd3"ry _ 
2G + cr,3 ~ log(ZTr/p x/3) 

/log(Zrr/p x/g) ~ru 

Appendix 2 
Shear  S t res s  not Cons tan t  
The importance of stresses which can develop 
normal to the fibre surface in stressed fibrous 
composites due to differences in the mechanical 
properties of the fibres and matrix has been 
demonstrated by Ebert and co-workers (see e.g. 
[13]). A significant effect of  these stresses is that 
in the absence of an adhesive bond, stress 
transfer can take place by frictional forces 
between matrix and fibre. In the region close to a 
crack face the stresses in the matrix are assumed 
(in the model discussed here) to fall to a low 
value. Consequently, the radial stresses at the 
fibre surface will be small, and stress transfer to 
the matrix will be reduced in these regions. The 
interfacial shear stress will therefore not be  
constant, as assumed in the integration of 
equation 3 above. 

This situation can be treated approximately by 
letting the radial stress at the fibre matrix inter- 
face in regions remote from the crack face have 
the value R. Close to the crack face, fibres subject 
to a strain e~ will be compressed by a radial stress 
of approximately 

v fErn  
R el. 

1 + Vm 

Let Erar = v~Em/(1 + Vm). Then in equation 3, 
~-y should be replaced by F ( R -  EmrEf) where 
F = coefficient of friction between fibres and 
matrix i.e. 

dEf 4~(R --  EmrEf) 
dx dEfr 

and following the steps outlined in the develop- 
ment of the theory we find, writing 

cruEmr 
( ~ -  EfrR (AS) 

that so long as 4~ < 1, the fibres will break in the 
region of the crack in the same way as for the 
theory presented above, and the critical fibre 
length and fibre and matrix energies are 
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dEfr 
(A9) 

Urn' = Ue (1 + ~)  �9 (A14) 

For q~ ~ 1 or q~ > 1 the approximation associ- 
ated with letting the radial stress be R --Emref 
is inadequate. 

Symbols Used 
c = half length of crack. 
d = fibre diameter. 

D = average separation of nearest neighbour 
fibres. 

E = Young's  modulus. 
G = shear modulus of matrix. 
K = fracture toughness. 
L = length of fibre on either side of crack. 
n = number of  fibres per unit area. 
P = force on fibre. 
R = pressure exerted by matrix on fibres. 
u = displacement. 
U = work. 
x = distance. 

Greek Symbols 
= 8G/d2Efr log(2~/p x/g). 

7' = surface energy or work. 
e = tensile strain. 
c} = efmEmr/E~rR. 
cr = tensile stress. 
~- = shear stress. 
F = coefficient of  friction. 
v = Poisson's ratio. 

7r(yu3d 3 
V~ t - -  _ _  

32FREer 

f } 
7rcru3d3 

V m  I - -  

16FREfr 

Finally writing r r  = FR, for small q~ these 
equations reduce to 
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Suffixes 
c = c o m p o s i t e .  

e = e l a s t i c .  

f = f i b r e .  

m = m a t r i x .  
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